Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro.

Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2- system of monocytes convert ...

متن کامل

Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection.

Oxidative modification of low density lipoprotein (LDL) appears to play an important role in atherogenesis. Although the precise mechanisms of LDL oxidation in vivo are unknown, several lines of evidence implicate myeloperoxidase and reactive nitrogen species, in addition to ceruloplasmin and 15-lipoxygenase. Myeloperoxidase generates a number of reactive species, including hypochlorous acid, c...

متن کامل

Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species.

The oxidative conversion of LDL into an atherogenic form is considered a pivotal event in the development of cardiovascular disease. Recent studies have identified reactive nitrogen species generated by monocytes by way of the myeloperoxidase-hydrogen peroxide-nitrite (MPO-H(2)O(2)-NO(2)(-)) system as a novel mechanism for converting LDL into a high-uptake form (NO(2)-LDL) for macrophages. We n...

متن کامل

Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells.

Exposure of cells to complex mixtures of oxidized lipids such as those found in oxidized low-density lipoprotein (oxLDL) induce reactive oxygen and nitrogen species (ROS/RNS) formation. The source of the ROS/RNS within cells is unknown; it is thought they may be involved in redox cell signaling. Although this possibility was initially overlooked, it is becoming clear that mitochondria, which ar...

متن کامل

Bioimaging Probes for Reactive Oxygen Species and Reactive Nitrogen Species

Reactive oxygen species (ROS) play key roles in many pathogenic processes, including carcinogenesis, inflammation, ischemia-reperfusion injury and signal transduction. Also, reactive nitrogen species (RNS) cause various biological events such as neurodegenerative disorders. Sensitive and specific detection methods for ROS and RNS in biological samples should be useful for elucidation of biologi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Clinical Investigation

سال: 1999

ISSN: 0021-9738

DOI: 10.1172/jci5549